Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus.

نویسندگان

  • Romain Nardou
  • Yehezkel Ben-Ari
  • Ilgam Khalilov
چکیده

Excitatory GABA action induced by high [Cl(-)](i) is thought to contribute to seizure generation in neonatal neurons although the mechanism of this effect remains unclear. We report that bumetanide, a NKCC1 antagonist, reduces driving force of GABA-mediated currents (DF(GABA)) in neonatal hippocampal neurons and blocks the giant depolarizing potentials (GDPs), a spontaneous pattern of network activity. In the preparation composed of two intact interconnected hippocampi, bumetanide did not prevent generation of kainate-induced seizures, their propagation to the contralateral hippocampus, and formation of an epileptogenic mirror focus. However, in the isolated mirror focus, bumetanide effectively blocked spontaneous epileptiform activity transforming it to the GDP-like activity pattern. Bumetanide partially reduced DF(GABA) and therefore the excitatory action of GABA in epileptic neurons. Therefore bumetanide is a potent anticonvulsive agent although it cannot prevent formation of the epileptogenic mirror focus. We suggest that an additional mechanism other than NKCC1-mediated contributes to the persistent increase of DF(GABA) in epileptic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NpgRJ_NM_1301 1..9

During development, activation of Cl -permeable GABAA receptors (GABAA-R) excites neurons as a result of elevated intracellular Cl levels and a depolarized Cl equilibrium potential (ECl). GABA becomes inhibitory as net outward neuronal transport of Cl develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit moto...

متن کامل

The effect of agonist and antagonist of Nociceptine/Orphanin FQ receptor on seizure and cognitive dysfunction in experimental model of temporal lobe epilepsy in male rat

Background: Temporal lobe epilepsy is a chronic neurological disorder characterized by spontaneous seizures, learning and memory deficiency, loss of neurons, mossy fiber sprouting and tissue apoptosis. This study was to investigate the effect of NOP receptor agonist (MCOPPB) and antagonist (SB612111) on seizure and cognitive dysfunction and histological studies in experimental model of temporal...

متن کامل

Neuronal chloride accumulation and excitatory GABA underlie aggravation of neonatal epileptiform activities by phenobarbital.

Phenobarbital produces its anti-epileptic actions by increasing the inhibitory drive of γ-aminobutyric acid. However, following recurrent seizures, γ-aminobutyric acid excites neurons because of a persistent increase of chloride raising the important issue of whether phenobarbital could aggravate persistent seizures. Here we compared the actions of phenobarbital on initial and established ictal...

متن کامل

Is it safe to use a diuretic to treat seizures early in development ?

There has been considerable interest in using bumetanide, a diuretic chloride importer NKCC1 antagonist, to reduce intracellular chloride ([Cl(-)](i)) in epileptic neurons, thereby shifting the polarity of GABA from excitatory to inhibitory and ameliorating the actions of GABA-acting antiepileptic drugs. However, a recent study raises the important issue of potential deleterious actions of bume...

متن کامل

Model-specific effects of bumetanide on epileptiform activity in the in-vitro intact hippocampus of the newborn mouse.

The immature brain has a higher susceptibility to develop seizures, which often respond poorly to classical pharmacological treatment. It has been recently suggested that bumetanide, which blocks Na(+)-dependent K(+)-Cl(-)-cotransporter isoform 1 (NKCC1) and thus attenuates depolarizing GABAergic responses, could soothe epileptiform activity in immature nervous systems. To evaluate whether bume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 6  شماره 

صفحات  -

تاریخ انتشار 2009